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SUMMARY: 

Vortex-induced vibrations (VIV) can cause fatigue and degradation of the structural components and lead to visual 

discomfort for users. Accurate detection and monitoring of VIV are therefore essential. In recent years, advances in 

machine learning and deep learning have made it possible to detect VIV with reduced human intervention, but the 

manual labeling process remains a challenge, as it is time-consuming, labor-intensive, and subjective. The label-free 

approach presented in this study aims to address these challenges by using synthetic data augmentation to generate 

VIV samples as single-mode harmonics. This approach eliminates the need for manual labeling and point-by-point 

annotation, making the process much faster and more efficient. The synthetic training data is used to train a deep 

learning network, which is then used to detect VIVs in real-time using time histories of acceleration. The results of 

field application demonstrate the effectiveness of this label-free approach in comparison to a prior labeled approach. 
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1. GENERAL INSTRUCTIONS 

Vortex-induced vibrations (VIVs) are significant risks to the stability and vibrational 

serviceability of long-span bridges (Kim et al., 2017). It can lead to fatigue and degradation of 

the structural components, as well as visual discomfort to users. Accurate detection and 

monitoring of VIV are thus crucial for ensuring the long-term reliability and safety of long-span 

bridges. Machine learning and deep learning advancements have made VIV detection possible 

with reduced human intervention (Kim and Kim, 2022, Li et al., 2018), but manual labeling 

remains challenging due to its time-consuming and labor-intensive nature (Lim et al., 2022). 

Real-time pointwise detection further exacerbates the difficulties by requiring point-by-point 

annotation (Kim et al., 2023). This study presents a label-free approach using synthetic data 

augmentation to address these difficulties. Instead of collecting VIV samples, the proposed 

method generates VIV response data as a single-mode harmonic. The efficacy of the proposed 

framework is validated using actual datasets of the cable-stayed bridge.  

 

 

2. METHODOLOGY 

The proposed framework in this study comprises three essential stages. The first stage 

encompasses the collection of non-VIV samples, followed by the second stage to synthesize VIV 

samples based on non-VIV datasets. The last stage involves training a signal segmentation model 

to classify the time history signals as VIV or non-VIV classes. 
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2.1. Data collection of non-VIV cases 

This study utilized the monitoring data of the Jindo Bridge in South Korea. The time histories of 

vertical acceleration were collected from the accelerometers and ultrasonic anemometer installed 

at the center of the main span. We selected non-VIV events from the datasets of ordinary wind 

speeds, lower than lock-in wind speed (10~16 m/s) (Kim et al., 2023). Note that all data points of 

these cases are annotated as non-VIV, and there are no available VIV samples at this stage.   

   

2.2. Synthetic VIV response augmentation 

Then, a single-mode vortex-induced vibration (VIV) was synthesized by incorporating 

artificially generated sine waves into non-VIV samples, which were collected when wind speed 

was below the onset speed for VIV. The synthesized VIV response, denoted as �̅�(𝑡), is defined 

in Equation (1).  

 

�̅�(𝑡) = {𝑥(𝑡) + 𝐴
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n
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In Equation (1), 𝑥(𝑡) is the raw acceleration of non-VIV cases, 𝑇 is the total measuring time of 

original data, 𝑇1 and 𝑇2 is the initiation and attenuation time, and 𝑓𝑡 is the frequency of VIVs, 

respectively.  𝐴 is the amplitude of the sinusoidal motion, which was determined to be ten times 

the standard deviation of 𝑥(𝑡) between 𝑇1 and 𝑇2. The schematic diagram of the synthesizing 

process is visualized in Figure 1. As depicted in the second step of the figure, the first and second 

terms in Equation (1) correspond to the oscillation (gray line) and its envelope (red dotted line), 

respectively. The ground truth for higher-mode VIV is subsequently defined as the duration 

between 𝑡 = 𝑇1 and 𝑡 = 𝑇2, represented by the yellow area in the third step. 

 

 

Figure 1. The schematic diagram of synthesizing a VIV response 

 

2.3. Signal segmentation deep network 

Figure 2 illustrates the framework for implementing a signal segmentation deep network. The 

first step involves the Fourier Synchrosqueezed Transform (FSST) method to extract time-

frequency estimates from time histories. This method is chosen for its ability to produce narrow 

and concentrated time-frequency estimates, improve the readability of time-frequency 

representations, and outperform other methods in multi-source signal segmentation problems. 

The next step involves using a Bidirectional Long-Short-Term-Memory (Bi-LSTM) network for 

sequence-to-sequence classification. The architecture of the proposed Bi-LSTM is as follows. 

Pick the two points from a raw acceleration Generate harmonic motion having an envelope Mix a harmonic motion to raw acceleration

GT



 

 

The input layer receives the FSST, of which size is determined by the frequency resolution of the 

FSST. The Bi-LSTM layer, which reduces the dimension of the input FSST into a feature 

number of hidden units, is connected to the input layer. The output from the Bi-LSTM layer is 

transferred to the fully connected layer of size 3 (the number of classes to be considered), 

followed by a SoftMax layer that provides score information for every sample point. Finally, the 

classifier layer estimates the label of sample points based on the scores produced by the SoftMax 

layer. In this way, the proposed model can classify vibration types in a pointwise manner, 

effectively determining the difference between VIV and non-VIV. 

 

 

Figure 2. The overall process for signal segmentation deep network 

 

3. RESULTS AND DISCUSSIONS 
 

3.1. Training results  

Figure 3(a) illustrates the representative results of VIV detection, where the ground-truths are 

represented by the red shaded boxes and the identified results as blue lines. The results clearly 

demonstrate the effectiveness of the proposed framework in identifying VIV occurrences in a 

pointwise manner. The confusion matrix shown in Figure 3(b) also confirms the good 

performance of the deep network model and synthesized datasets for pointwise VIV detection, 

which resulted in a high accuracy (micro-F1 score) of 98.56%.  

 

 
 

(a) Example (b) Confusion matrix 

Figure 3. VIV detection results on the training datasets 

 

3.2. Applicability to actual VIV dataset 

The efficacy of the model trained with synthetic data was evaluated by applying it to validation 

datasets not used in training. For this purpose, labeled data from prior research was employed as 

validation data (Kim et al., 2023). In comparison, the prior model trained with manually labeled 
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data achieved a micro-F1 score of around 94%. The label-free approach proposed in this study 

also demonstrated a satisfactory level of accuracy, with a micro-F1 score of 91%.  

 

Despite this, as seen in Figure 4(a), the label-free model resulted in considerable false positives 

(FPs) of 8.4%. To delve into this issue, the cases of true positive (TP) and FP are separately 

presented in Figure 4(b). It is observed in the FP case that the deck exhibited free vibrations after 

the passage of a vehicle. These free vibrations (non-VIV) were misclassified as VIV because of 

the synthetic strategy outlined in Section 2.2, which assigned all low-amplitude sinusoids as VIV. 

Hence, future studies will endeavor to improve the model’s performance by incorporating low-

amplitude sine waves as negative samples. 

 

  

(a) Confusion matrix (b) Example 

Figure 4. VIV detection results on the validation datasets 

 

4. CONCLUSIONS 

This study presents a label-free approach to detect vortex-induced vibrations (VIVs) in long-span 

bridges using synthetic data augmentation. The results indicate that the proposed method is 

effective in detecting VIV in real time with minimal human efforts, contributing to the 

serviceability assessment of the structure. Further studies are ongoing to increase the method’s 

field applicability and assess its robustness on different bridges. 
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